ML925JA43F-02Y47
Manufacturer/Distributor: Mitsubishi
Laser Type: DFB
Mitsubishi Laser Diodes
Description:
Laser Type: Laser-Diode
Laser diodes distinguish themselves through their production of coherent, monochromatic, and highly directional light. This unique combination of properties grants them exceptional precision, efficiency, and versatility, rendering them indispensable in a broad spectrum of applications, from fiber optic communications and medical technology to industrial measurements and consumer electronics.
Laser Type: Wavelength-Stabilized-Laser-Diodes
The primary advantages of wavelength-stabilized laser diodes include high stability with minimal wavelength drift over time and under different operating conditions. They also produce light with a very narrow spectral width, which is essential for many precision applications, and the stable wavelength reduces phase noise, improving signal quality in communication systems.
Laser Type: DFB
Choosing a DFB (Distributed Feedback) laser diode is advantageous for applications requiring high spectral purity, single longitudinal mode operation, and stable wavelength emission. These diodes are ideal for telecommunications, spectroscopy, and sensing due to their narrow linewidth, efficiency, and low noise performance. Additionally, DFB lasers can be customized to specific wavelengths, making them suitable for various high-precision and high-performance tasks.
Wavelength Range: IR
Wavelength Range: Infrared radiation typically spans wavelengths from about 700 nanometers (nm) to 1 millimeter (mm). This range can be further subdivided into near-infrared (NIR), mid-infrared (MIR), and far-infrared (FIR). Near-Infrared (NIR): 700 nm to 1.4 micrometers (µm) Mid-Infrared (MIR): 1.4 µm to 3 µm Far-Infrared (FIR): 3 µm to 1 mm
Mode: singlemode
This article refers to: ML925JA43F-02Y47 (Manufacturer/Distributor: Mitsubishi Laser Type: DFB Wavelength Range: IR Mode: singlemode ) - ML925JA43F-02Y47 - singlemode DFB Wavelength 1470nm (Nanometer) Power 0.01W (Watt)
- Mitsubishi
- DFB
- IR
- singlemode