FWSP-1290-002-FC9-Coax-PD-DFB
Manufacturer/Distributor: FLC
Laser Type: DFB
Fiber-coupled DFB Laser Diode
Description:
Manufacturer/Distributor: FLC
Frankfurt Laser Company (FLC) is known for its innovation and its ability to provide customized solutions to meet specific customer requirements, including hard-to-source and specialized laser diodes. In 2024, the company celebrated its 30th anniversary, reflecting on a successful history of technological advancements that have significantly contributed to the development of the laser industry.
Laser Type: Fiber-Coupled-Laser-Diodes
Fiber coupled lasers ensure efficient and precise light delivery by integrating the laser source with an optical fiber, minimizing losses and maintaining beam quality over long distances. Their compact, robust design allows for flexible routing and easy integration into various systems, making them ideal for applications in medical procedures, industrial manufacturing, and scientific research. Additionally, they offer superior beam quality, enhanced safety, and effective thermal management, making them a reliable and versatile choice for a wide range of applications.
Laser Type: Wavelength-Stabilized-Laser-Diodes
Wavelength-stabilized laser diodes are a type of semiconductor laser that maintains a stable output wavelength regardless of variations in temperature, current, or other external factors. These lasers are designed to provide a consistent and precise wavelength, which is essential for many applications where accuracy and reliability are critical.
Laser Type: DFB
Distributed feedback (DFB) laser diodes are distinct from other types of lasers, such as Fabry-Perot lasers, due to their ability to produce a single longitudinal mode. This single-mode operation is essential for applications requiring stable and precise wavelengths.
Wavelength Range: IR
Infrared (IR) radiation is a type of electromagnetic radiation with wavelengths longer than visible light but shorter than microwave radiation.
Mode: singlemode
Singlemode lasers are particularly useful in applications requiring precise control of the light beam. In optical communication, their high coherence and narrow beam allow for efficient coupling into optical fibers, which reduces signal loss and enables long-distance communication. In high-precision measurement systems, singlemode lasers provide the accuracy needed for applications such as interferometry, spectroscopy, and metrology. They are also ideal for sensing and imaging applications due to their focused and coherent beam, making them suitable for high-resolution imaging and precise sensing applications, including LIDAR and biomedical imaging. Furthermore, singlemode lasers are frequently used in scientific research, particularly in laboratories for experiments requiring precise and stable light sources, such as atomic and molecular spectroscopy. The design of singlemode lasers typically involves specific structural considerations, such as a small core size or a precise refractive index profile, to support only the fundamental transverse mode and ensure high beam quality and coherence.
This article refers to: FWSP-1290-002-FC9-Coax-PD-DFB (Manufacturer/Distributor: FLC Laser Type: DFB Wavelength Range: IR Mode: singlemode ) - FWSP-1290-002-FC9-Coax-PD-DFB - singlemode DFB Wavelength 1290nm (Nanometer) Power 0.002W (Watt)
- FLC
- DFB
- IR
- singlemode