FLPD-780-20-FBG-BTF
Manufacturer/Distributor: FLC
Laser Type: FBG
Description:
Manufacturer/Distributor: FLC
Frankfurt Laser Company (FLC), established in 1994, is a prominent global supplier of laser technologies. They offer a wide range of laser diodes, including FP, DFB, and DBR types, covering wavelengths from 213 nm to 20 µm and power ranges from 1 mW to 5600 W. Known for their innovative solutions, FLC caters to various industries such as machine vision, manufacturing, medicine, and aerospace. Celebrating their 30th anniversary in 2024, FLC continues to lead in laser technology advancements.
Laser Type: Fiber-Coupled-Laser-Diodes
Fiber coupled lasers combine the benefits of high-intensity laser sources with the practical advantages of optical fiber technology, resulting in a powerful and adaptable tool for a wide range of industries and applications.
Laser Type: FBG
One of the significant advantages of Fiber Bragg Grating (FBG) Stabilized Laser Diodes is their high stability, maintaining a consistent wavelength over time and across temperature variations. This stability is achieved through mechanisms that compensate for temperature-induced changes in the refractive index and the grating period of the Fiber Bragg Grating. Additionally, these laser diodes produce light with a very narrow spectral width, which is essential for high-resolution applications. They also offer low phase and intensity noise, making them beneficial for coherent communication systems.
Wavelength Range: IR
Applications with infrared (IR) wavelengths span across various fields. Near-Infrared (NIR) is used in fiber optic communications, medical imaging, and night vision equipment. Mid-Infrared (MIR) is important for spectroscopy, chemical sensing, and environmental monitoring due to the absorption characteristics of many molecules in this range. Far-Infrared (FIR) is utilized in thermal imaging, astronomy, and studying the thermal properties of materials.
Mode: multimode
Multimode in lasers refers to the operation of a laser that supports multiple transverse modes, resulting in a light beam that is less coherent and more divergent compared to single-mode lasers. This means the laser emits light at multiple spatial patterns and sometimes at multiple frequencies, leading to a broader and more diffuse beam. Multimode lasers are useful in applications where high power and wide beam spread are required, such as in material processing, medical treatments, and certain types of optical sensors. The design of multimode lasers typically involves a larger core size or different refractive index profile to support multiple light paths.
This article refers to: FLPD-780-20-FBG-BTF (Manufacturer/Distributor: FLC Laser Type: FBG Wavelength Range: IR Mode: multimode ) - FLPD-780-20-FBG-BTF - multimode FBG Wavelength 780nm (Nanometer) Power 0.02W (Watt)
- FLC
- FBG
- IR
- multimode