FPD-XXS-770-YY-DBR ()
Manufacturer/Distributor: FLC
Laser Type: DBR
Description:
Manufacturer/Distributor: FLC
Frankfurt Laser Company (FLC) is known for its innovation and its ability to provide customized solutions to meet specific customer requirements, including hard-to-source and specialized laser diodes. In 2024, the company celebrated its 30th anniversary, reflecting on a successful history of technological advancements that have significantly contributed to the development of the laser industry.
Laser Type: CW-Laser-Diodes
Continuous-wave (CW) laser diodes are highly efficient and can be manufactured to emit light at various wavelengths, making them versatile for different applications.
Laser Type: Fiber-Coupled-Laser-Diodes
Fiber coupled lasers are a type of laser system where the laser light is transmitted through an optical fiber. This design integrates a laser source with an optical fiber, allowing the light to be efficiently delivered to a specific location with minimal loss and high precision. The optical fiber acts as a conduit, guiding the laser beam from its source to the desired point of application.
Laser Type: Laser-Diode
Laser diodes excel in applications requiring precise, coherent, and directional light, such as fiber optic communication, consumer electronics, medical procedures, sensing, and scientific research. Their versatility, efficiency, and compact size make them invaluable in diverse fields, from telecommunications and optical storage to surgery and industrial measurement.
Laser Type: Wavelength-Stabilized-Laser-Diodes
The primary advantages of wavelength-stabilized laser diodes include high stability with minimal wavelength drift over time and under different operating conditions. They also produce light with a very narrow spectral width, which is essential for many precision applications, and the stable wavelength reduces phase noise, improving signal quality in communication systems.
Laser Type: DBR
A Distributed Bragg Reflector (DBR) laser diode is a type of semiconductor laser that utilizes a periodic structure, known as a Bragg reflector, to create a highly reflective feedback mechanism within the laser cavity. This periodic structure consists of alternating layers of materials with different refractive indices, which are designed to reflect specific wavelengths of light. The primary purpose of these reflectors is to enhance the laser's efficiency and performance by providing a narrow linewidth and a stable single-mode output.
Wavelength Range: IR
Wavelength Range: Infrared radiation typically spans wavelengths from about 700 nanometers (nm) to 1 millimeter (mm). This range can be further subdivided into near-infrared (NIR), mid-infrared (MIR), and far-infrared (FIR). Near-Infrared (NIR): 700 nm to 1.4 micrometers (µm) Mid-Infrared (MIR): 1.4 µm to 3 µm Far-Infrared (FIR): 3 µm to 1 mm
Mode: singlemode
This article refers to: FPD-XXS-770-YY-DBR () (Manufacturer/Distributor: FLC Laser Type: DBR Wavelength Range: IR Mode: singlemode ) - - singlemode DBR Wavelength 770nm (Nanometer) Power 0.08W (Watt)
- FLC
- DBR
- IR
- singlemode