FLPD-1060-40-DFB-BTF
Manufacturer/Distributor: FLC
Laser Type: DFB
DFB Laser Diode
Description:
Manufacturer/Distributor: FLC
Frankfurt Laser Company (FLC) is known for its innovation and its ability to provide customized solutions to meet specific customer requirements, including hard-to-source and specialized laser diodes. In 2024, the company celebrated its 30th anniversary, reflecting on a successful history of technological advancements that have significantly contributed to the development of the laser industry.
Laser Type: Fiber-Coupled-Laser-Diodes
One of the key advantages of fiber coupled lasers is their ability to deliver high-quality laser light over considerable distances without significant degradation. This makes them ideal for applications that require precise and controlled laser delivery, such as medical procedures, industrial cutting and welding, telecommunications, and scientific research.
Laser Type: Wavelength-Stabilized-Laser-Diodes
Wavelength-stabilized laser diodes are a type of semiconductor laser that maintains a stable output wavelength regardless of variations in temperature, current, or other external factors. These lasers are designed to provide a consistent and precise wavelength, which is essential for many applications where accuracy and reliability are critical.
Laser Type: DFB
Distributed feedback (DFB) laser diodes are distinct from other types of lasers, such as Fabry-Perot lasers, due to their ability to produce a single longitudinal mode. This single-mode operation is essential for applications requiring stable and precise wavelengths.
Wavelength Range: IR
Infrared radiation can be emitted by objects that are not hot enough to emit visible light, making it useful for thermal imaging and night vision. Various sensors and detectors, such as photodiodes and bolometers, are used to detect infrared radiation.
Mode: singlemode
Singlemode lasers are particularly useful in applications requiring precise control of the light beam. In optical communication, their high coherence and narrow beam allow for efficient coupling into optical fibers, which reduces signal loss and enables long-distance communication. In high-precision measurement systems, singlemode lasers provide the accuracy needed for applications such as interferometry, spectroscopy, and metrology. They are also ideal for sensing and imaging applications due to their focused and coherent beam, making them suitable for high-resolution imaging and precise sensing applications, including LIDAR and biomedical imaging. Furthermore, singlemode lasers are frequently used in scientific research, particularly in laboratories for experiments requiring precise and stable light sources, such as atomic and molecular spectroscopy. The design of singlemode lasers typically involves specific structural considerations, such as a small core size or a precise refractive index profile, to support only the fundamental transverse mode and ensure high beam quality and coherence.
This article refers to: FLPD-1060-40-DFB-BTF (Manufacturer/Distributor: FLC Laser Type: DFB Wavelength Range: IR Mode: singlemode ) - FLPD-1060-40-DFB-BTF - singlemode DFB Wavelength 1060nm (Nanometer) Power 0.04W (Watt)
- FLC
- DFB
- IR
- singlemode