FVIV-878.6-65W-FC400-VBG
Manufacturer/Distributor: FLC
Laser Type: VBG
Wavelength Stabilized Fiber-coupled Laser Diode
Description:
Manufacturer/Distributor: FLC
The Frankfurt Laser Company (FLC) is a specialized company based in Germany that focuses on the development, production, and distribution of laser products and systems.
Laser Type: Fiber-Coupled-Laser-Diodes
One of the key advantages of fiber coupled lasers is their ability to deliver high-quality laser light over considerable distances without significant degradation. This makes them ideal for applications that require precise and controlled laser delivery, such as medical procedures, industrial cutting and welding, telecommunications, and scientific research.
Laser Type: Wavelength-Stabilized-Laser-Diodes
The primary advantages of wavelength-stabilized laser diodes include high stability with minimal wavelength drift over time and under different operating conditions. They also produce light with a very narrow spectral width, which is essential for many precision applications, and the stable wavelength reduces phase noise, improving signal quality in communication systems.
Laser Type: VBG
Volume Bragg Grating (VBG) stabilized laser diodes use a volume Bragg grating to provide wavelength stabilization and spectral narrowing, ensuring the laser emits light at a precise and stable wavelength. This technology enhances spectral purity and temperature stability, making it ideal for applications requiring highly monochromatic light, such as spectroscopy, telecommunications, and lidar. The VBG reflects specific wavelengths back into the laser diode, forcing it to emit light with a very narrow linewidth and increased coherence length.
Wavelength Range: IR
Infrared radiation can be emitted by objects that are not hot enough to emit visible light, making it useful for thermal imaging and night vision. Various sensors and detectors, such as photodiodes and bolometers, are used to detect infrared radiation.
Mode: multimode
Multimode lasers excel in applications where high power and a broad beam are advantageous. They are particularly effective in: Material Processing: The high power and broad beam of multimode lasers make them ideal for cutting, welding, and engraving materials like metals, plastics, and ceramics. Medical Treatments: They are used in procedures such as laser surgery, skin treatments, and phototherapy, where a larger treatment area and higher energy are beneficial. Optical Sensors: Multimode lasers are employed in sensors that require a more diffuse light source, which can be useful in detecting variations over a larger area. Illumination and Display Technologies: The broad beam and higher power are useful in lighting applications and projection systems where wide and uniform illumination is needed. Overall, multimode lasers are preferred in scenarios where the primary requirements are high power output and wide beam coverage rather than precision and narrow beam focus.
This article refers to: FVIV-878.6-65W-FC400-VBG (Manufacturer/Distributor: FLC Laser Type: VBG Wavelength Range: IR Mode: multimode ) - FVIV-878.6-65W-FC400-VBG - multimode VBG Wavelength 879nm (Nanometer) Power 65W (Watt)
- FLC
- VBG
- IR
- multimode